Speaker adaptation based on nonlinear spectral transform for speech recognition

نویسندگان

  • Toyohiro Hayashi
  • Yoshihiko Nankaku
  • Akinobu Lee
  • Keiichi Tokuda
چکیده

This paper proposes a speaker adaptation technique using a nonlinear spectral transform based on GMMs. One of the most popular forms of speaker adaptation is based on linear transforms, e.g., MLLR. Although MLLR uses multiple transforms according to regression classes, only a single linear transform is applied to each state. The proposed method performs nonlinear speaker adaptation based on a new likelihood function combining HMMs for recognition with GMMs for spectral transform. Moreover, the dependency of transforms on context can also be estimated in an integrated ML fashion. The proposed technique outperformed conventional approaches in phoneme-recognition experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Formant-based frequency warping for improving speaker adaptation in HMM TTS

Vocal Tract Length Normalization (VLTN), usually implemented as a frequency warping procedure (e.g. bilinear transformation), has been used successfully to adapt the spectral characteristics to a target speaker in speech recognition. In this study we exploit the same concept of frequency warping but concentrate explicitly on mapping the first four formant frequencies of 5 long vowels from sourc...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010